Références

- ALMENNINGEN, A., BASTIANSEN, O. & HANSEN, L. (1955). Acta Chemica Scandinavia, 9, 1306.
- BAK, B., HANSEN, L. & RASTRUP-ANDERSEN, J. (1954). J. Chem. Phys. 22, 2013.
- COCHRAN, W. (1948). J. Sci. Instrum. 25, 253.
- DONOHUE, J. (1952). J. Phys. Chem. 56, 502.
- ELLER, G. VON (1955). Bull. Soc. franç. Minér. Crist. 78, 157.

- FRIEDLANDER, P. H., LOVE, W. & SAYRE, O. (1955). Acta Cryst. 8, 732.
- International Tables for X-ray Crystallography (1959), vol. 2, p. 326. Birmingham: Kynoch Press.
- KUPFER, D. (1961). Thèse, Faculté de Médecine, Paris. PAULING, L. (1960). The Nature of the Chemical Bond,
- p. 140. New York: Wiley.
- RERAT, C. (1960a). Acta Cryst. 13, 72.
- RERAT, C. (1960b). Acta Cryst. 13, 459.
- ROLLETT, J. S. & SPARKS, R. A. (1960). Acta Cryst. 13, 273.
- SCHOMAKER, V. & PAULING, L. (1939). J. Amer. Chem. Soc. 61, 1769.

Acta Cryst. (1962). 15, 433

Refinement of the Structure of N,N'-Hexamethylenebispropionamide

By L. H. JENSEN

Department of Anatomy, University of Washington, Seattle, Washington, U.S.A.

(Received 18 November 1960 and in revised form 11 August 1961)

The structure of N,N'-hexamethylenebispropionamide,

$$\begin{array}{ccc} O & O \\ \| & \| \\ C_2 H_5 CNH(CH_2)_8 NHCC_2 H_5 \end{array},$$

has been refined by three-dimensional ΔF syntheses. The following average bond lengths and angles with the indicated standard deviations were determined:

C-C, 1.529 ± 0.002 Å; \angle C-C-C, $112.8 \pm 0.7^{\circ}$; \angle H-C-H, $108.9 \pm 1.2^{\circ}$.

Electron densities at the H atom sites range from 0.32-0.42 e.Å⁻³, average 0.38 e.Å⁻³.

There is pronounced thermal anisotropy with the direction of maximum vibration almost perpendicular to the plane of the molecule. It was not possible to determine with certainty what part of the thermal anisotropy is due to rotary oscillation about the long axis of the molecule; it is not large but, if present and corrected for, would increase slightly the average C-C bond length and decrease the average C-C-C bond angle.

Introduction

The determination of the crystal structure of N,N'hexamethylenebispropionamide (Fig. 1) has been reported by Jensen, Krimm, Parrish & Wood (1957). The work originally was undertaken primarily to ascertain the direction of the bonds in the peptide group. Along with polarized infra-red spectroscopic studies, this information permits the location of the transition moments with respect to the bond directions.

Refinement of the two-dimensional data was carried to the point where standard deviations in the bond lengths could be expected to lie in the range 0.01-0.02 Å. All the C-C bond lengths in the chain were appreciably shorter than the bond length in diamond, 1.544 Å, and the five C-C bonds in the chain averaged almost 0.03 Å less than this value. The present work was carried out to determine more accurate bond lengths and to study the electron density in the crystal in greater detail, particularly the electronic anisotropy due to thermal motion and the electron density due to hydrogen atoms.

Experimental

The unit-cell parameters used were the same as reported earlier:

$$a = 18.60, b = 4.96, c = 7.49 \text{ Å}; \beta = 97^{\circ} 15'$$

(based on Cu Ka, $\lambda = 1.5418 \text{ Å}$).

The space group is $P2_1/a$ with two molecules per unit cell.

An ordinary histological microtome fitted with a razor blade was used to cut a cylindrical crystal about 0.15 mm. in diameter, cylinder axis coincident with b. Zero and upper level unidimensionally integrated

Fig. 1. Numbering of the atoms in N,N'-hexamethylenebispropionamide. The half molecule shown is the asymmetric unit in the crystal structure.

Weissenberg data were collected on a Wiebenga-type (Wiebenga & Smits, 1950) integrating camera. Intensities were determined with a recording microdensitometer (Jensen, 1954) and were measured on both top and bottom halves of the film. For all but the fourth level, the measurements were done by different technicians. Comparison of the two sets of results indicated random errors of less than 2% in the structure factors.

A total of 1341 reflections with $0 \le k \le 4$ were accessible with the camera used. Of these, 851 (63.5%) were observed.

Refinement of the structure

Calculation of the observed structure factors with the coordinates and scale factor from the two-dimensional work and isotropic temperature factors with $B=4\cdot 0$ Å² for the C₁-C₄ and N atoms; $5\cdot 5$ Å² for the C₅ atom and $6\cdot 0$ Å² for the C₆ and O atoms resulted in a reliability index R of 19.9%. This rather high value of R does not reflect large errors in the positional parameters, but is the result of pronounced electronic anisotropy as is apparent from the ΔF synthesis shown in Figs. 2(a), (b). The deviation of the electron density from that assumed for spherical atoms is sufficient to mask the atomic shifts for most of the atoms. The direction of maximum thermal motion is in a plane essentially at right angles to the plane of

Fig. 2. Difference synthesis showing electronic anisotropy. Differences are from electron densities corresponding to B values of 4.0 for C_1, C_2, C_3, C_4, N ; 5.5 for C_5 and 6.0 for C_6 and 0. Contours at 0.1 e.Å⁻³, zero contour omitted, negative contours broken. (a) Composite map of sections close to the plane of the molecule. (b) Sections essentially perpendicular to the plane of the molecule.

Fig. 3. Difference synthesis from which final parameter changes were derived. Contours at $0.05 \text{ e.}\text{Å}^{-3}$, zero contour omitted, negative contours broken. (a) Composite map of sections close to the plane of the molecule. (b) Sections essentially perpendicular to the plane of the molecule.

the molecule and, except for C_6 , makes an angle of approximately 5° with (010).

Three refinement cycles by ΔF syntheses (Cochran, 1951), based on structure factors calculated with individual atom anisotropic temperature factors, re-

duced R to 9.5%. The ΔF synthesis at this stage showed a ridge of positive electron density running down the backbone of the molecule, and it was clear that errors in the temperature-factor parameters alone could not account for it. For these three cycles the

Table	1.	Observed	and	calculated	structure	factor
Tanto	**	000000000	anna	curowiaiou	011 401410	Juoior

h	10 F. 10F.	h 10 F ₀ 10F _c	h 10 F ₀ 10F _c	h 10 F ₀ 10F _c	h 10 F ₀ 10F _c	h 10 F ₀ 10F _c
24680246802	b00 173 170 316 -314 78 128 140 414 -3 121 -115 80 80 91 91 419 8 24 15 416 1	$\begin{array}{c} h05\\ -18&27&26\\ -16&418&10\\ -14&22&16\\ -12&160&-160\\ -10&136&-139\\ -8&91&92\\ -4&136&-114\\ -2&67&76\\ 2&51&-52\\ 4&20&21\\ \end{array}$	hil -21 415 6 -20 416 -13 -19 19 -15 -18 33 29 -16 37 40 -15 73 -14 63 775 -13 143 140 -12 17 15 -11 91 -88 -10 22 -17	h13 -2 125 124 -1 193 -193 1 122 129 2 412 -11 3 303 -24 4 129 -16 5 44 -26 6 44 -26 6 44 -26 8 415 -15 8 415 -4 9 109 114	$\begin{array}{c} h16 \\ -17 & 414 & 11 \\ -16 & 415 & 4 \\ -15 & 47 & 0 \\ -14 & 21 & -12 \\ -13 & 418 & -17 \\ -12 & 35 & 23 \\ -10 & 419 & -16 \\ -9 & 419 & -16 \\ -9 & 419 & -16 \\ -6 & 87 & 94 \\ \end{array}$	$\begin{array}{cccccc} h20 & & -77 \\ 0 & 104 & -88 \\ 2 & 46 & -88 \\ 3 & 189 & -176 \\ 4 & 100 & 90 \\ 5 & 74 & 70 \\ 6 & 416 & 200 \\ 8 & 65 & -75 \\ 10 & 47 & -48 \\ 11 & 66 & -58 \end{array}$
-220 -18 -14 -120 -18 -108 -14	h01 417 -4 28 -21 419 11 419 2 173 166 192 172 245 -235 47 48	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-9 69 -58 -8 134 128 -7 207 193 -6 107 -102 -5 121 -106 -4 101 -94 -3 48 -46 -2 151 128 -1 31 -26 0 48 52 1 535 561	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 127 123 4 18 21 5 25 -243 6 235 -243 7 258 262 8 37 -39 9 17 -22 9 17 -22 9 17 -22 11 36 -30 11 36 -30 11 36 -30 11 36 -30 11 4 41 15 41 15 41 16 41 9 -8	$\begin{array}{c} h14\\ -22 & 411 & 3\\ -21 & 412 & -5\\ -20 & 414 & 7\\ -19 & 416 & 6\\ -18 & 417 & -4\\ -17 & 418 & 4\\ -16 & 53 & -53\\ -15 & 419 & -15\\ -14 & 88 & 89\\ -13 & 143 & -142\\ -12 & 141 & 141\end{array}$	$\begin{array}{c} & & & & & & & & \\ & & & & & & \\ & & & & & \\ &$	$\begin{array}{ccccccc} h21 \\ -22 & 23 & -24 \\ -21 & 412 & 13 \\ -20 & 21 & 19 \\ -19 & 415 & 11 \\ -18 & 416 & 18 \\ -17 & 22 & 22 \\ -16 & 47 & 51 \\ -15 & 79 & 80 \\ -14 & 37 & 39 \\ -12 & 39 & -42 \\ -11 & 81 & -74 \end{array}$
20864208642024680	b02 21 -18 30 30 23 -18 29 -25 39 33 361 336 364 352 20 -244 364 352 20 43 364 352 20 43 364 -390 384 -390 364 -390 364 -390 519 523 69 71	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
124 146 180 22 22 20 	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 0 & -1 & -2 \\ 10 & 21 & -7 \\ 12 & 41 & -10 \\ \hline \\ h08 \\ -14 & 81 & -73 \\ -12 & 416 & -73 \\ -12 & 416 & 12 \\ -10 & 418 & -33 \\ -8 & 33 & -31 \\ -8 & 33 & -31 \\ -6 & 417 & 40 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 214 8 10 19 15 11 48 46 12 19 17 13 416 -17 14 22 -23 15 32 -32 16 417 -10 17 18 -16 18 415 10 19 19
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	h15 -211 411 4 -202 412 0 -18 415 -4 -16 417 -12 -16 417 -12 -16 417 -12 -15 419 -7 -12 419 -7 -7 -12 419 -7 -12 419 -7 -7 -12 419 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7	h18 -14 412 4 -13 411 -6 -12 20 17 -10 415 3 -9 4166 1 -7 4166 -15 -4 19 -27 -3 417 -20 -1 417 -2 -1 417 -2 -1 417 -2 -1 416 -8 -1 22 21 -2 -1 417 -2 -1 416 -8 -1 22 21 -2 -1 212 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
22864208642002468024	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\ -26\\$	7-5 7-7 7-7	A 5 6 7 7 8 4 4 11 1 6 4 4 11 1 7 8 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 4 4 11 1 5 5 4 4 11 1 5 5 4 4 11 1 5 5 4 4 11 1 5 5 5 4 4 11 1 5 5 5 5	$\begin{array}{c} -6 & 121 & -102 \\ -101 & 121 & 112 \\ -102 & 121 & 142 \\ -102 & 120 & -244 \\ -102 & 249 & -2144 \\ -102 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 249 & -244 \\ -122 & 244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -122 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -244 \\ -124 & -244 & -2$
16 18 20 -20	60 59 14 15 411 -3 h05 34 -30	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-9 24 -22 -8 114 98 -7 150 139 -6 236 221 -5 377 372 -4 412 -1 -3 198 -200	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

STRUCTURE OF N,N'-HEXAMETHYLENEBISPROPIONAMIDE

Table 1 (cont.)

h	10 Fo	10Fc	р	10 Fo	10Fc	h	10 Fo	10Fc	h	10 Fo	10Fc	h	10 Fo 10Fc	h	10 F. 10Fc
222987654321109876543210-234567890112		111445273867842760338425590740052865 121445273867842760338425590740052865	- 87654701-098740470-1018745678901101846 	- 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	01592682326271010081218C66559965388	876547010-27456789012134567690 000	h 12183861998100200247770966626955840 22 228	-14037-120837644250711022970-240	87655477470127456789012174567 111111111111111111111111111111111111	h 2493398974655553118636572197 h 2493398974655553118636572197 h 2403198974655553118636572197 h 24031989746555531186365721197 h 24031989746555531186365721197 h 240319789746555531186365721197 h 240319789746555531186365553118197 h 24031978974655553118197 h 24031978974655553118197 h 24031978974655553118197 h 240497497 h 240497497497 h 240497497 h 240497497 h 240497497 h 240497497 h 240497497 h 240497497 h 240497497497 h	2090505583045509568173816743 114255251396568173816743 1001148:	B 19432101274 01234567890112345678	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
13 145 167 189 20	20 417 416 415 413 413 411 410	13 -1 -15 -4 -4 9 -4	-16 -15 -14 -12 -12	h27 28 212 213 214 214	-12 -27 11 -8 -10	-16 -16 -15 -14 -13 -12 -12	28 31 28 59 89 84 50	-34 325 604 853 -57	-12 -11 -10 -9 -8 -7 -6	2099 199 416 4169	-13 17 -18 31 -5 -21	-18 -17 -16 -15 -14 -12 -12	15 -20 16 -14 412 -12 413 -11 28 27 38 38 25 16 21 18	-32-0123	33 -24 60 -59 76 76 33 27 414 -12 33 47 67 -71 414 -1
-21 -219 -118 -116 -115 -115 -112 -111 -110	h24 410 411 413 414 21 416 417 36 417 77 132	10 -6 97 17 8 34 34 -81 -134	-198-76543210 	21563226777 221677187 2117187 2117187 2167187 2166 2167 2166 2166	-265 -27 -27 -27 -27 -27 -27 -27 -27 -27 -27		54467555963898304 13963898304	-54 -54 5135 -195 -197 -1		0065 460 1278 486 1278 486 167 167 167 167 1667	-00 485 1283 -236 187 -35 17 123 377 -23 277	-198765432101234	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	45 66 78 99 10 11 12 13 14	405 -57 28 30 19 18 54 -54 28 30 19 18 54 -54 32 -31 32 -31 32 -31 411 4 410 3 410 3 410 3 411 4 410 3 49 4 b45 -57 28 30 -29 4 b45 -29 18
987654321	66 24 415 19 175 113 80	63 16 65 1 23 182 117 36 87	5 6 7 8 9 10 11 12	415 415 414 19 411 412 49	3062 22134 3	6 7 8 9 10 11 12 13	82 34 16 415 20 20 17	-87 36 -11 8 20 -19 19 -18	11 12 13 14 15	31 16 √12 24 √9 h36	-27 11 -1 21 -2	5 67 8 90 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-13 -12 -11 -10 -9 -8 -7 -6	19 28 20 41 -39 22 -15 413 -11 37 -39
012345670	17 62 61 22 103 71 44 59	-23 -63 71 18 -107 71 -52 69	-13 -12 -11 -10 -9 -8	h28 410 412 26 16 413 414	-66 -27 -19 -12 -8	15 16 17 18 19	215 214 28 211 21 h33	-32 -32 -24	-105 -113 -113 -112 -110 -18	21 26 412 43 28 21 19 37 415	-19 24 40 22 19 18 -38	13 14 15 16 17 -18	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
890123456789 1121456789	41 417 417 417 417 417 417 417 4	-429 -19 -10 577 11 8 -3	-765432 -101234	214 17 215 214 19 214 219 214 213 213 213 212	373563269927	-20 -19 -18 -17 -15 -14 -13 -12 -11 -10 -9	4113 4113 4113 417 8888222 928	-12 84 13 -21 53 -61 34 89 119	-76543210-1234	15 21 23 416 416 44 415 51 51 33	14 -28 -130 -48 289 75 -130 -48 289 75	-17 -16 -15 -14 -12 -11 -10 -19 -10 -10 -10 -17 -16	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 5 6 7 8 9 10 11 12	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
-20 -19 -18 -17 -16 -15	h25 411 21 414 414 415 416	0 17 9 15 11 -16	5 6 7 8 1 2 3	217 210 211 29 h30 31 158 42	16 -11 -7 -7 33 145 -30	-87654 -654321 -1210	123 60 111 66 413 62 12 88 15	120 -61 -101 -68 1 66 82 18	5 6 7 8 9 10 11 12	415 415 414 413 413 415 411	-3 -5 -21 10 -10 14 0	-543210123	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	-12 -11 +10 -9 -8 -76 -54	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
-14 -13 -12 -11 -10 -9 -8 -7 -6	216 22 217 45 217 217 75 56 117 -	2 17 11 46 5 -79 61	4 5 7 8 9 10 11	8 40 79 21 20 116 84 16	-1 -50 -82 -19 -123 -21 -90	12345678	92 89 124 20 115 415 415 416	-95 -999 -119 125 -228 -238	-13 -12 -11 -10 -9 -8	h37 24 31 26 411 45 45	25 -27 28 43 60	4 5 6 7 8 9 10 11	25 33 31 23 413 6 414 -4 25 -32 414 14 414 -10 414 -17		413 -9 22 26 413 11 59 52 46 47 412 -1 412 -5 412 -5
-54-32-1012	54 416 37 416 21 107 76 24	54 -16 46 19 117 71 13	13 14 15 16 17 18 19 20	36 36 415 15 19 412 410	38 -39 -5 -19 27 -16 -11	10 11 12 13 14 15 16	26 19 416 415 413 413	-33 18 -7 29 107		26 30 214 214 214 214 214 214	-322 -16235	13 14 15 16	59 59 413 -9 28 -30 411 -4 49 -47 48 -3 h43	5 6 7 8 9	31 -32 35 35 410 -3 410 -6 48 17 h47
134567890127	196363893055 43263893055	-30 -30 17 -49 -23 -27 -21	-20 -19 -18 -17 -16 -15 -14	h31 25 412 25 46 41 31 57	20 11 29 43 -38 -32 -61	-19 -18 -17 -16 -15 -14	411 h34 411 411 16 17 18 415	1009 -19 -163 -5	-23456789	414 243 412 22 31 412 410 h38	- 95 - 254 1204 8 3 8 3 8 3	-17 -16 -15 -14 -13 -12 -11 -10 -9 -8	18 -16 413 -5 312 -5 30 29 27 22 78 71 28 -31 35 -29	-8765432 -15432 -10 12	49 -7 41 -37 26 28 411 -17 18 15 212 -1 411 -15 410 13
14 15 16 17	414 412 14 49	-29 05	-12 -11 -10 -9	416 54 56 67	58 57 73	-12 -11 -10 -9	416 22 57 72	-26 -26 -73	-9 -8 -7 -6	18 23 24 19	21 -24 23 -9	-6 -5 -4 -3	50 -48 72 70 51 46 413 -4 40 53	34	31 32

436

Table 2. Atomic parameters

	ala	allh	ala	$U_{11} \times 10^2$	$U_{22} \times 10^{2}$	$U_{33} \times 10^2$	$U_{12} \times 10^{2}$	$U_{13} \times 10^2$
•	<i>u u</i>	910	2/0		(11)	(21)	(21)	0.00
0	0.1329	0.0010	0.4490	9.20	2.91	1.19	0.99	0.00
N	0.1125	0.1802	0.5323	6.89	3.17	5.86	0.42	2.39
C,	0.0080	0.1121	0.9378	6.94	3.80	5.95	0.48	2.31
C.	0.0551	0.0296	0.7939	6.85	3.93	5.92	0.45	2.24
C,	0.0692	0.2652	0.6724	7.42	4.05	6.14	0.68	2.81
C₄	0.1413	0.3628	0.4314	6.37	3.17	5.73	0.43	1.74
C,	0.1885	0.2476	0.2960	8.45	5.19	6.77	0.61	3.52
C ₆	0.2087	0.5420	0.1626	9.91	6.71	8.04	0.00	3.99
*H,	0.0437	0.8068	0.1298					
H,	0.0364	0.2757	0.0198					
H_3	0.0268	0.8687	0.7111					
$\mathbf{H}_{\mathbf{A}}$	0.1070	0.9518	0.8606					
H_5	0.0177	0.3457	0.6081					
H_{6}	0.0993	0.4227	0.7542					
Ħ,	0.1209	0.9843	0.5121					
H_8	0.1586	0.0828	0.2216		* 日	atom coord	inates listed	were calculate
H	0.2386	0.1678	0.3712		tetrah	edral C ator	ns with C-F	I bond length
\mathbf{H}_{10}	0.1586	0.5318	0.0872		and a	trigonal N	atom with 1	N–H bond ler
H11	0.2386	0.6168	0.2368		Final	F_c were cal	lculated wit	h these coord
H_{12}	0.2426	0.3692	0.0654		H ato	m isotropic t	emperature i	factors of $B =$

scale factor for F_{rel} was held to the value determined from the two-dimensional data. After some minor corrections in the data, two additional refinement cycles, in which the data for each level were scaled independently, reduced R to 7.3%. The positive electron density down the chain has been removed although a positive region remains in most of the bonds. Figs. 3(a), (b) show sections of the ΔF synthesis from which final parameter corrections were taken.

Before the last refinement cycle, two partial cycles were carried out based on a single section through the ΔF syntheses coincident with the 401 plane. Since all the heavier atoms lie near the plane, it should be possible with a relatively small amount of calculation to obtain corrections to the parameters having components in the plane. These two partial cycles did not, however, reduce R and have not been numbered as refinement cycles.

Table 3. Bond lengths and angles

$C_1 - C_1'$	1·527 Å	$C_{1}'-C_{1}-C_{2}$	113·3°
$C_1 - C_2$	1.532	$C_{1} - C_{2} - C_{3}$	111.5
$C_{9} - C_{9}$	1.525	$C_{9} - C_{3} - N$	$111 \cdot 2$
C ₃ –N	1.459	$C_3 - N - C_4$	120.6
Ň–C₄	1.333	$N - C_4 - C_5$	115.3
$C_4 - C_5$	1.533	$C_4 - C_5 - C_6$	113.6
$C_5 - C_8$	1.504	N-C ₄ -O	$122 \cdot 8$
C₄-O	1.230	$C_5 - C_4 - O$	121.9
$\dot{N-H} \cdots O$	2.947	Ň–H · · · O	176.8
*C1-H1	1.128	$H_1 - C_1 - H_2$	110.0
$C_1 - H_2$	1.105	$H_{3} - C_{2} - H_{4}$	111.5
$C_2 - H_3$	1.090	$H_5 - C_3 - H_6$	108.0
$C_2 - H_4$	1.069	$H_8 - C_5 - H_9$	$103 \cdot 2$
$C_3 - H_5$	1.047	$H_{10} - C_6 - H_{11}$	107.2
$C_3 - H_6$	1.022	$H_{10}-C_6-H_{12}$	110.0
$C_5 - H_8$	1.096	$H_{11}-C_6-H_{12}$	112.4
$C_5 - H_9$	1.077		
$C_{6} - H_{10}$	1.143		
$C_{6} - H_{11}$	1.042		
$C_{6} - H_{12}$	1.102		
N-H.	1.047		

* C-H and N-H bond lengths based on H atom positions estimated from ΔF synthesis showing H atoms.

Fig. 4. Composite difference synthesis showing H atoms. Sections through H atoms and parallel to $20,\overline{2},5$ plane. Contours at positive integral values of 0.05 e.Å-3 beginning at 0.1 e.Å-3.

The H atoms were located in a ΔF synthesis including only terms with $\sin \theta / \lambda \leq 0.48$. Fig. 4 is a composite of sections through the H atoms and parallel to the $20,\overline{2},5$ plane. Except for those through H_7 and H_{12} , the sections are roughly either parallel or perpendicular to the H atom-heavy-atom bonds.

All calculations in this work were done on an IBM 650 computer using programs written in these

 $U_{23} \times 10^{2}$ (Ų) 1.04 0.420.550.520.60 0.540.61 0.00

Laboratories (Brown, Stewart, Lingafelter & Jensen, 1959). In the ΔF syntheses by which refinement was carried out, all reflections, except as noted below, were given unit weight and the coordinates shifted by the full amounts indicated. In calculating structure factors, Amsterdam (Berghuis *et al.*, 1955) scattering factors were used for carbon, nitrogen and oxygen, and McWeeny (1951) values were used for hydrogen. Observed and calculated structure factors appear in Table 1. Parameters used in the final F_c calculation are listed in Table 2 and bond lengths and angles in Table 3.

Precision of the results

Only one of the 851 observed reflections, 401, was seriously in error due to secondary extinction. Accordingly, this reflection was given zero weight in all ΔF syntheses. From the 850 remaining reflections, 5 scale, 24 positional and 35 temperature factor parameters were determined.

To evaluate the standard deviation, σ , of the coordinates, it is necessary to know the curvature, $\partial^2 \varrho / \partial x_i^2$, of ϱ along each axis for each atom (Cruickshank, 1949). From the ΔF synthesis shown in Fig. 2, it is clear that for N,N'-hexamethylenebispropionamide, curvatures differ from one atom to the next for the same atom type and for any atom vary appreciably with direction.

'Average' curvatures may be calculated by assuming ϱ to obey the relation $\varrho = \varrho_0 \exp[-pr^2]$ (Costain, 1941). Setting the integral of this expression over all space equal to the number of electrons in the atom gives a relation for p as a function of ϱ_0 and n (Booth, 1947). This leads directly to the following expression for the central curvature in three dimensions:

$$(d^2\rho/dr^2)_{r=0} = -2\pi\rho_0^{5/3}/n^{2/3}$$

where ϱ_0 is the peak density of, and *n* the number of electrons associated with the atom.

No directly measured ρ_0 are available for N,N'hexamethylenebispropionamide since no F_o synthesis was calculated. Nevertheless, comparison of the range of thermal parameters with those of *n*-nonanoic acid hydrazide (Jensen & Lingafelter, 1961) indicates that without great error $\rho_0 = 7$, 8.5 and 10 e.Å⁻³ may be assumed for C, N and O atoms respectively. Curvature calculated for these ρ_0 are given in Table 4. These values should be underestimates of the curvatures along the bond directions since maximum thermal motion is almost perpendicular to the plane of the chain.

 Table 4. Peak densities, curvatures and standard deviations

Atom type	Peak density	Curvature	σ
0	10∙0 e.Å-3	— 72·9 е.Å-5	0·0021 Å
Ν	8.5	-60.9	0.0025
С	7.0	-48.7	0.0031
H	0.38		0.051

Table 5. Standard deviations in bond lengths

Bond	σ
C–O	0·0037 Å
C–N	0.0038
CC	0.0044
C-H	0.051
N-H	0.051

The curvature to be used for the H atoms was calculated in the usual way from the peaks in the ΔF synthesis, Fig. 4: ϱ_0 was taken as the average peak density and p was evaluated along the bond direction for one of the atoms, H₆, by plotting log ϱ versus r. The result also appears in Table 4.

From σ_x for each atom type, standard deviations in the bond lengths were calculated and are listed in Table 5.

Discussion

The maximum difference in any coordinate between the two- and three-dimensional results is 0.028 Å in the y coordinate for C₃. The average difference in coordinates for all atoms is 0.011 Å.

The hexamethylene chain is accurately planar. The equation for the best plane, as determined by least-squares, through the hexamethylene chain atoms is

$$0.19276x + 0.05946y + 0.15911z = 1$$

referred to a, b and c^* as coordinate axes. No one of the six atoms deviates from this plane by more than 0.0017 Å and the average deviation is 0.0011 Å.

The bond lengths and angles found for the peptide group are in remarkable agreement with the values deduced by Corey & Donohue (1950) from the structures of some amino acids and peptides available a decade ago and used by Pauling, Corey & Branson (1951) in their study of the possible helical arrangements of polypeptide chains. Except for C-N, the bond lengths are also in good agreement with those reported in the recent study of Katz & Post (1960) and bond angles are close to their values. In view of the different packing from compound to compound, somewhat larger deviations in the angles might have been expected.

The two-dimensional work gave C-C bond lengths appreciably less than the 1.544 Å C-C bonds in diamond. Brief reference was made to this difference in the report of the two-dimensional work, and a possible explanation in terms of the approximations used in treating the temperature factors was suggested to account in part for the results. From the present work, the five C-C bond lengths average almost 0.01 Å greater than those resulting from the two-dimensional work.

Although the C_4-C_5 bond is adjacent to a resonating system, there is no indication that its length is different from the three C-C bonds in the hexamethylene chain. The average length of these four bonds is 1.529 Å; and the C_5-C_6 bond is 0.025 Å less than this.

Table 6. Data on C-H bonds

C atom valence		Estimated	No. bonds				
state	Length	mean	averaged	\mathbf{Method}	Reference		
sp^2	1.08 Å	0.015 Å(¹)	9	XRD	Drenth & Wiebenga, 1955		
sp^3	0.91	0.06	2	XRD	Marsh, 1958		
sp^3	0.94	0.05(1)	3	XRD	Reddy & Lipscomb, 1959		
sp^3	0.94	0.01	2	XRD	Degeilh & Marsh, 1959		
sp^3	0.94	0.08	2	XRD	Shintani, 1960		
sp^3	1.090	$0.018(^{1})$	14	XRD	Jensen & Lingafelter, 1961		
sp^3	1.084	0.011(1)	11	XRD	This study		
sp^2	1.090	0.005	8	e.d.	Bastiansen, Hedberg & Hedberg, 1957		
sp^2	1.084	0.003	4	e.d.	Bartell & Bonham, 1959		
sp^3	1.108	0.004	10	e.d.	Bonham & Bartell, 1959		
sp^3	1.118	0.004	12	e.d.	Bonham, Bartell & Kohl, 1959		
sp^3	1.118	0.006	14	e.d.	Bonham, Bartell & Kohl, 1959		
sp^3	1.121	0.007	16	e.d.	Bonham, Bartell & Kohl, 1959		
sp^2	1.08	0.04	4	n.d.	Bacon & Currie, 1956		
sp^2	1.05	$0.013(^{1})$	4	n.d.	Bacon & Currie, 1960a		
sp^2	1.12	0.02	5	n.d.	Bacon & Currie, 1960b		
	$(T = 293 \ ^{\circ}\text{K.})$						
sp^2	1.06	0.02	5	n.d.	Bacon & Currie, 1960b		
	$(1 = 120^{-1} \text{K.})$						

(1) From r.m.s. deviations from the mean.

Such a difference would be significant by the ordinary criteria. However, terminal atoms such as C_6 and O in N,N'-hexamethylenebispropionamide, unless restricted by packing or hydrogen bonds, frequently have relatively large motions at right angles to the bonds, with a resultant apparent decrease in bond length (Cruickshank, 1956). The short C_5-C_6 bond is probably to be attributed largely to this cause.

If the thermal motion at right angles to the plane of the chain were due entirely to angular oscillation about a longitudinal axis, bonds in the chain would be short by 0.03 Å or more. It is doubtful whether systematic errors of this magnitude are in fact present since the average C–C bond length excepting C_5-C_6 does not differ appreciably from that found in other hydrocarbon chains. This implies that the excess thermal motion perpendicular to the chain is due to linear rather than rotary oscillation. It seems likely, therefore, that corrections due to angular oscillation are large in N,N'-hexamethylenebispropionamide only for the terminal C_5-C_6 and C_4 -O bonds. To give a definite answer will require low-temperature data.

It is evident from Fig. 4 that for H atoms the spread in electron density in a direction at right angles to the bond and the chain axis is considerably greater than in the direction of the bond. Presumably this effect is due to thermal motion involving bending of the C-H bonds since the molecule does not appear to be undergoing appreciable rotary oscillation. The peak densities of the H atoms range from 0.32-0.42 e.Å⁻³, average 0.38 e.Å⁻³.

C-H bond lengths

Highly accurate values for C-H bond lengths are now available not only from spectroscopic measurements but also from electron diffraction (Bartell, 1960). Although the precision of the X-ray results is much less, they are nevertheless important. Since X-rays are scattered almost wholly by the planetary electrons, the C-H bond lengths from X-ray diffraction will not be identical with results from techniques which measure internuclear distances. If X-ray results of sufficient accuracy can be obtained, they will be useful in theoretical studies of electron distributions in hydrogen-containing molecules. Moreover, the accuracy of C-H bond lengths may serve as a sensitive indicator of errors in the data or refinement techniques.

The positions of H atoms in hexamethylenebispropionamide were determined from a ΔF synthesis based on structure factors omitting H-atom contributions. The eleven C-H bond lengths range from 1.022-1.144 Å, average 1.084 Å. The value of σ_{mean} is 0.011 Å as calculated from the r.m.s. deviations of the individual bond lengths from the mean, and 0.015 Å as calculated from $\Sigma \Delta F^2$.

The average C-H bond length from this study is listed in Table 6 along with other recent values found in compounds with no atoms heavier than oxygen. Only results which are averages of two or more bond lengths are included, and those from X-ray diffraction are all based on partial or complete three-dimensional data.* Standard deviations in the average values are those of the authors if given or are estimates from other data as indicated.

The results for electron and neutron diffraction indicate no serious differences, either within or between the groups, and are in essential agreement with spectroscopic values (see, for example, Herzberg &

 $[\]ast$ Tomiie (1958) has tabulated a number of additional results from two- and three-dimensional X-ray diffraction data.

Stoicheff, 1955). The results from X-ray diffraction, on the other hand, show no such agreement. Comparison of the estimated σ_{mean} with the differences between different determinations indicates the probable operation of systematic errors, which are more likely to be in the refinement than in the data.

Tomiie (1958) has estimated a C-H bond length of 0.92 Å for a *B* value of 2.2 and a reasonable value of another parameter, λ . Over the range of these parameters likely to be met with in practice, this study indicates a shortening of 0.1–0.3 Å. Furthermore, Cochran (1956) has evaluated the electron density in the benzene ring, but his study indicates a shortening of only 0.03 Å.

From the variable nature of both the experimental and theoretical results for the C-H bond length, it is difficult to be definite about the value or range of values to be expected from X-ray diffraction. But elimination of systematic errors in the refinement technique coupled with diffraction data taken at or below the temperature of liquid air (Cruickshank, 1960) should result in C-H bond lengths of some significance.

From data collected at liquid air temperature, we may expect central densities of H atoms to increase by a factor of about 2 over values obtained from diffraction data collected at room temperature. Since curvature of electron density varies approximately as the 5/3 power of the central density, standard deviations in the mean C-H bond lengths in the range 0.003-0.005 Å should be obtained when averaging over ten or more bonds in molecules such as N,N'-hexamethylenebispropionamide.

The author wishes to express his thanks to Miss Kate Metheny and Miss Lassia Radomsky who measured most of the intensities, and to acknowledge financial support from the Fund for Biological and Medical Research of the University of Washington and from the National Institutes of Health under Grant A-858.

References

BACON, G. E. & CURRY, N. A. (1955). Proc. Roy. Soc. A, 235, 552. BACON, G. E. & CURRY, N. A. (1960a. Acta Cryst.) 13, 10.

- BACON, G. E. & CURRY, N. A. (1960b). Acta Cryst. 13, 717.
- BARTELL, L. S. (1960). Private Communication.
- BARTELL, L. S. & BONHAM, R. A. (1959). J. Chem. Phys. 31, 400.
- BASTIANSEN, O., HEDBERG, L. & HEDBERG, K. (1957). J. Chem. Phys. 27, 1311.
- BERGHUIS, J., HAANAPPEL, IJ. M., POTTERS, M., LOOP-STRA, B. O., MACGILLAVRY, C. H. & VEENENDAAL, A.L. (1955). Acta Cryst. 8, 478.
- BONHAM, R. A. & BARTELL, W. S. (1959). J. Amer. Chem. Soc. 81, 3491.
- BONNAM, R. A., BARTELL, L. S. & KOHL, D. A. (1959). J. Amer. Chem. Soc. 81, 4765.
- BOOTH, A. D. (1947). Proc. Roy. Soc. A, 188, 77.
- BROWN, B. W., LINGAFELTER, E. C., STEWART, J. M. & JENSEN, L. H. (1959). Acta Cryst. 12, 350.
- COCHRAN, W. (1951). Acta Cryst. 4, 408.
- COCHRAN, W. (1956). Acta Cryst. 9, 924.
- Сокеу, R. B. & DONOHUE, J. (1950). J. Amer. Chem. Soc. 72, 2899.
- CONTAIN, W. (1941). Ph.D. Thesis, University of Birmingham.
- CRUICKSHANK, D. W. J. (1949). Acta Cryst. 2, 65.
- CRUICKSHANK, D. W. J. (1956). Acta Cryst. 9, 757.
- CRUICKSHANK, D. W. J. (1960). Acta Cryst. 13, 774.
- DEGEILH, R. & MARSH, R. E. (1959). Acta Cryst. 12, 1007.
- DRENTH, W. & WIEBENGA, E. H. (1955). Acta Cryst. 8, 755.
- HERZBERG, G. & STOICHEFF, B. P. (1955). Nature, Lond. 175, 79.
- JENSEN, L. H. (1954). J. Amer. Chem. Soc. 76, 4663.
- JENSEN, L. H., KRIMM, S., PARRISH, R. G. & WOOD, D.L. (1957). Acta Cryst. 10, 528.
- JENSEN, L. H. & LINGAFELTER, E. C. (1961). Acta Cryst. 14, 507.
- KATZ, J. L. & POST, B. (1960). Acta Cryst. 13, 624.
- MARSH, R. E. (1958). Acta Cryst. 11, 654.
- MCWEENY, R. (1951). Acta Cryst. 4, 513.
- PAULING, L., COREY, R. B. & BRANSON, H. R. (1951). Proc. Nat. Acad. Sci. Wash. 37, 205.
- REDDY, J. & LIPSCOMB, W. N. (1959). J. Chem. Phys. 31, 610.
- SHINTANI, R. (1960). Acta Cryst. 13, 609.
- TOMIIE, Y. (1958). J. Phys. Soc. Japan, 13, 1030.
- WIEBENGA, E. H. & SMITS, D. W. (1950). Acta Cryst. 3, 265.